Assessing HF in the Emergency Department

Christopher Chien, MD Clinical Assistant Professor, UNC (Chapel Hill) Medical Director HF Clinic, UNC-Rex 4.25.2019

UNC REX HEALTHCARE

Back to basics

	ADHERE	EURO HF	OPTIMIZE-HF
	(150,000 pts.)	(11,327 pts.)	(48, 612 pts.) [¶]
Any dyspnea (%)	89	70	90
Dyspnea at rest (%)	34	40	45
Fatigue (%)	32	35	23
Rales (%)	68	N/A	65
Peripheral edema (%)	66	23	65
Systolic BP (%)			
< 90 mmHg	2	< 1	< 8
90 - 140 mmHg	48	70	44
> 140 mmHg	50	29	48

Patients are admitted because of dyspnea

Is dyspnea from HF?

THE RATIONAL CLINICAL EXAMINATION

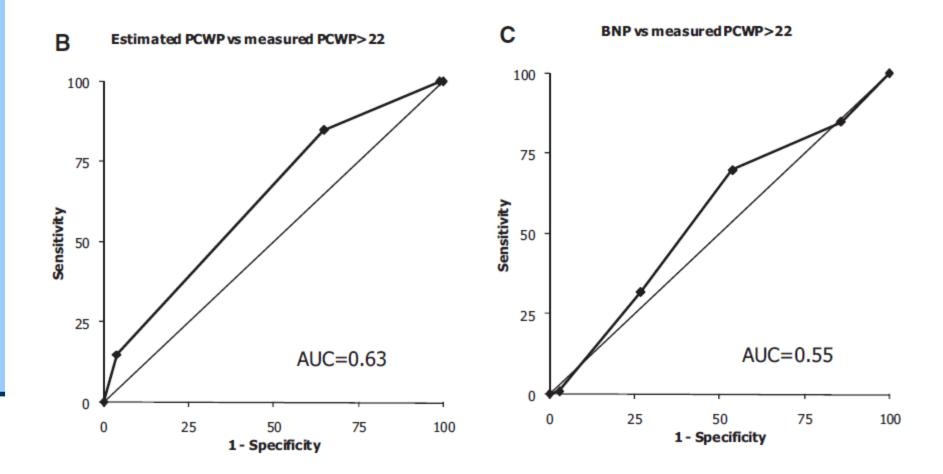
Symptom	Sensitivity	Specificity	
Dyspnea on exertion	0.84	0.34	
PND	0.41	0.84	
Orthopnea	0.50	0.77	
Edema	0.51	0.76	
Physical Exam Finding			
LE edema	0.50	0.78	
JVD	0.39	0.92	
Rales	0.60	0.78	
Gallop (S3)	0.13	0.99	

50% of HF patients don't have LE edema

Best symptoms/findings:

- PND

CLINICIAN'S CORNER


- JVD
- Gallop
- Rales

Traditional methods are often either sensitive or specific but not both; they also struggle to communicate severity of HF

Wang, et al. JAMA 2005

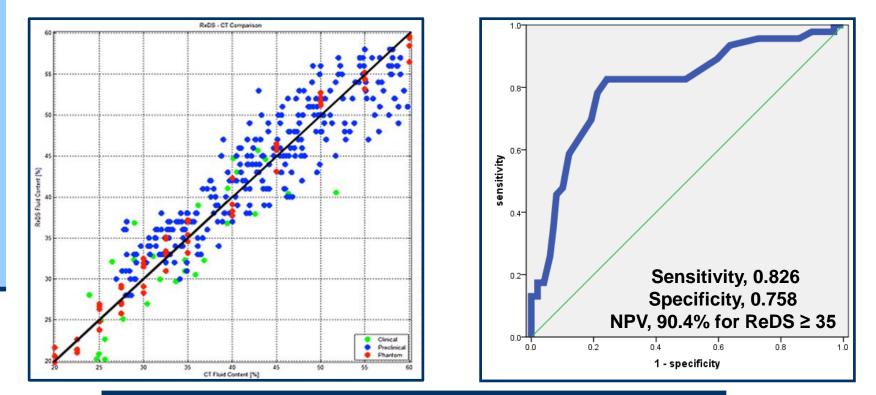
Can we assess elevated filling pressures?

We are not very good job predicting left sided pressures

Drazner, et al. Circ HF 2008

ReDS Vest

- Non-invasive vest that can be used to measure lungfluid content
- Surrogate for physical exam


- Emits low power electromagnetic signals into the body
- Device measures dielectric return signals, which reflect the fluid content of the tissues
- Provides an <u>absolute</u> number that reflects the lung fluid content (normal 20-35%)

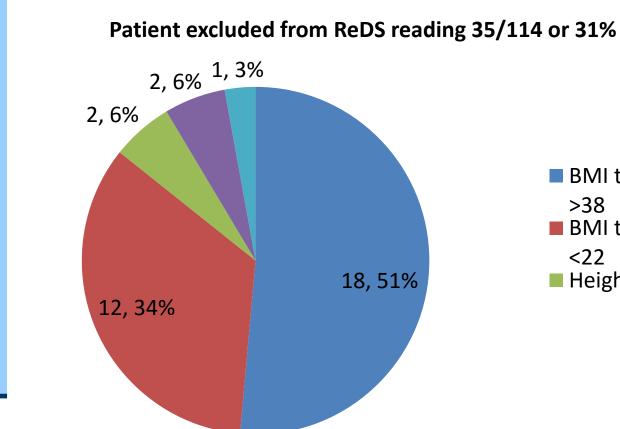
ReDS Vest	20 – 35%	36 – 40%	> 40%
reading	NORMAL	MODERATE RISK	SIGNIFICANT RISK
% H20 in lungs			

ReDS Vest Accuracy vs. other measures of HF

ReDS vs. CT scan and PA catheterization (PCWP > 17)

Accurate, Absolute, Actionable

UNC Rex: Early experience


Two week period of testing the device in the emergency room and HF clinic

ED patients either had a history of CHF or presented with dyspnea

Study usability and outcomes

Inclusion versus Exclusion from Pilot

BMI too high >38 BMI too low <22 Height

All reasons for exclusion

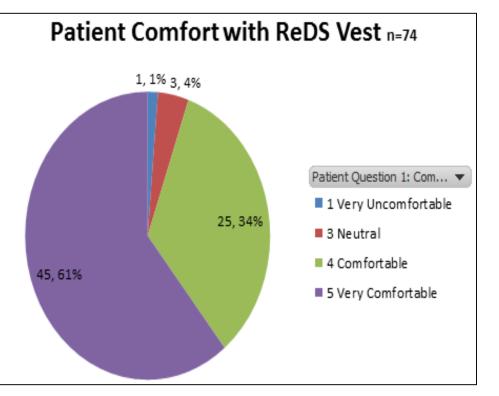
- BMI > 38
- BMI < 22
- Height > 6'4"
- Height < 5'1"
- C. Diff *
- Implant or Device
- Patient or Family Refusal*

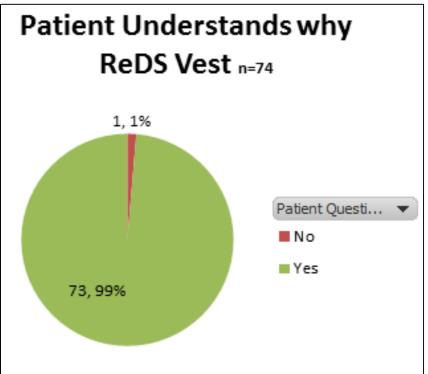
*no patient's in these categories

~70% of patients could be assessed by ReDS

Patient Satisfaction & Understanding

Patient questions


1) On a scale 1 - 5, how comfortable was it to wear this vest?

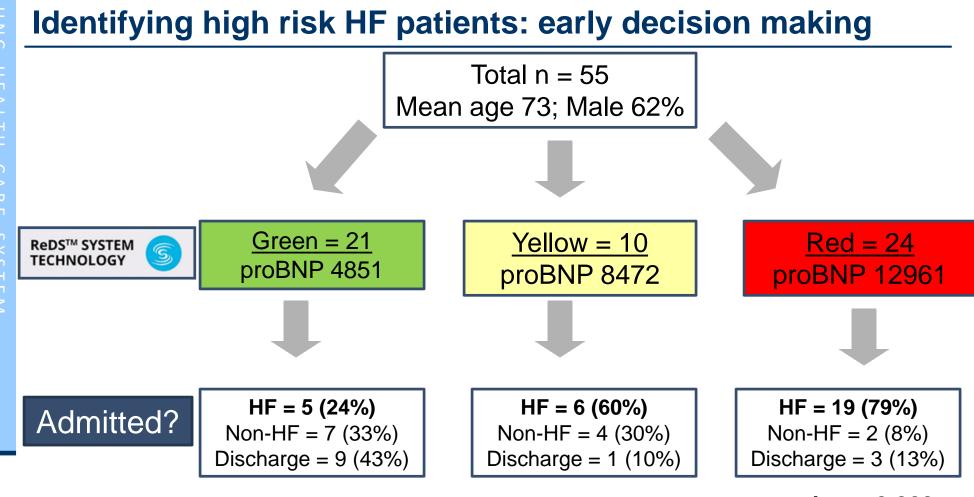

No

2) Do you understand why we are using this vest?

Yes

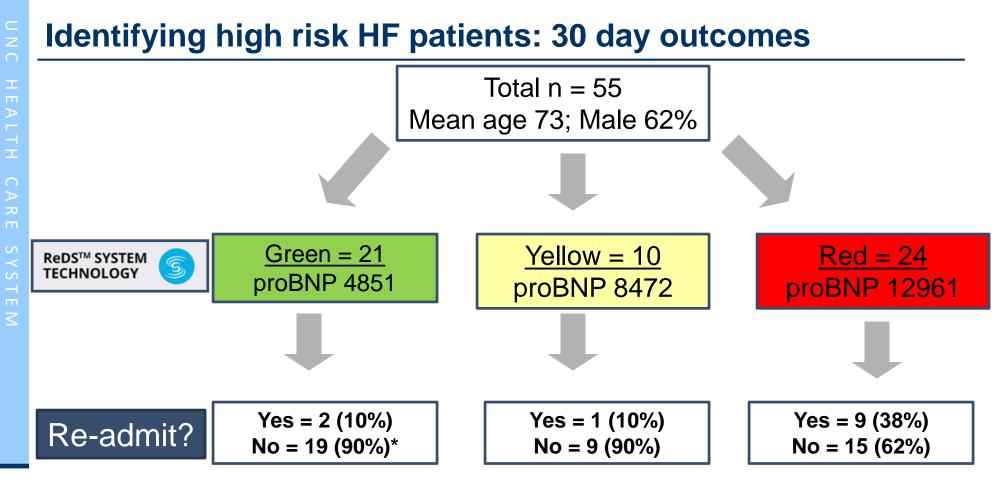
Patient satisfaction was high 95% Patient understanding was very high 99%

UNC-Rex next steps


- On the basis of the product evaluation pilot and existing data, we purchased 3 vests
- Identified <u>superusers and champions</u> from the ED and our dedicated HF clinic to help implement utilization
- Began to work on creating a pathway and collecting data Risk stratification?
 Utilization of HF clinic as an alternative to admission (high % of patients with LOS < 3 days)

Emergency Room Pathway

	Low Risk – Refer	Moderate Risk	Significant Risk –
	to Clinic		Admit**
Heart	≤ 80 bpm	80 – 100 bpm	> 100 bpm
Rate			
Blood	≥ 120 / 80		≤ 90 / 60
Pressure			> Systolic 180
O2 Sat	≥ 95%	92 – 94%	< 92%
ReDS Vest reading % H20 in lungs	25 – 35%	36 – 40%	> 40%
	Attempt to discharge with HF clinic follow up	Clinical judgement zone	Admit
			UNC HEALTH CAN


First 55 emergency department patients

p-value = 0.003

Early decision making aided by ReDS

p-value = 0.02 for ReDS \geq 40

* - of the 9 patients discharged from ED, none were subsequently admitted

Identifying a high risk cohort = opportunities for improvement, resource allocation

Next steps

Continuing to collect data with the hope of using this across our health care system

Nationwide study of ReDS vest use in the emergency room?

Targeted interventions?

- Time to diuretic
- Use of cardiology, HF consultants
- ReDS vest at discharge to make sure they are dry

Summary

ReDS vest is a highly accurate and absolute measure of lung fluid content

ReDS vest can help triage and identify diagnoses in emergency room patients with undifferentiated dyspnea and/or history of CHF

Initial data suggests that ReDS vest reading in the emergency department predicts outcomes out to 30 days. This can be used to identify patients who can be safely discharged vs. require more intensive resources

Discussion (food for thought)

Will this be like the ECG for congestive heart failure?

How do we communicate the degree of volume overload?

